You're out of free questions.

Upgrade now

Write a function that takes a list of characters and reverses the letters in place.

An in-place function modifies data structures or objects outside of its own stack frame

Overview

The call stack is what a program uses to keep track of function calls. The call stack is made up of stack frames—one for each function call.

For instance, say we called a function that rolled two dice and printed the sum.

  def roll_die():
    return random.randint(1, 6)

def roll_two_and_sum():
    total = 0
    total += roll_die()
    total += roll_die()
    print(total)

roll_two_and_sum()

First, our program calls roll_two_and_sum(). It goes on the call stack:

roll_two_and_sum()

That function calls roll_die(), which gets pushed on to the top of the call stack:

roll_die()
roll_two_and_sum()

Inside of roll_die(), we call random.randint(). Here's what our call stack looks like then:

random.randint()
roll_die()
roll_two_and_sum()

When random.randint() finishes, we return back to roll_die() by removing ("popping") random.randint()'s stack frame.

roll_die()
roll_two_and_sum()

Same thing when roll_die() returns:

roll_two_and_sum()

We're not done yet! roll_two_and_sum() calls roll_die() again:

roll_die()
roll_two_and_sum()

Which calls random.randint() again:

random.randint()
roll_die()
roll_two_and_sum()

random.randint() returns, then roll_die() returns, putting us back in roll_two_and_sum():

roll_two_and_sum()

Which calls print()():

print()()
roll_two_and_sum()

What's stored in a stack frame?

What actually goes in a function's stack frame?

A stack frame usually stores:

  • Local variables
  • Arguments passed into the function
  • Information about the caller's stack frame
  • The return address—what the program should do after the function returns (i.e.: where it should "return to"). This is usually somewhere in the middle of the caller's code.

Some of the specifics vary between processor architectures. For instance, AMD64 (64-bit x86) processors pass some arguments in registers and some on the call stack. And, ARM processors (common in phones) store the return address in a special register instead of putting it on the call stack.

The Space Cost of Stack Frames

Each function call creates its own stack frame, taking up space on the call stack. That's important because it can impact the space complexity of an algorithm. Especially when we use recursion.

For example, if we wanted to multiply all the numbers between 11 and nn, we could use this recursive approach:

  def product_1_to_n(n):
    return 1 if n <= 1 else n * product_1_to_n(n - 1)

What would the call stack look like when n = 10?

First, product_1_to_n() gets called with n = 10:

    product_1_to_n()    n = 10

This calls product_1_to_n() with n = 9.

    product_1_to_n()    n = 9
    product_1_to_n()    n = 10

Which calls product_1_to_n() with n = 8.

    product_1_to_n()    n = 8
    product_1_to_n()    n = 9
    product_1_to_n()    n = 10

And so on until we get to n = 1.

    product_1_to_n()    n = 1
    product_1_to_n()    n = 2
    product_1_to_n()    n = 3
    product_1_to_n()    n = 4
    product_1_to_n()    n = 5
    product_1_to_n()    n = 6
    product_1_to_n()    n = 7
    product_1_to_n()    n = 8
    product_1_to_n()    n = 9
    product_1_to_n()    n = 10

Look at the size of all those stack frames! The entire call stack takes up O(n)O(n) space. That's right—we have an O(n)O(n) space cost even though our function itself doesn't create any data structures!

What if we'd used an iterative approach instead of a recursive one?

  def product_1_to_n(n):
    # We assume n >= 1
    result = 1
    for num in range(1, n + 1):
        result *= num

    return result

This version takes a constant amount of space. At the beginning of the loop, the call stack looks like this:

    product_1_to_n()    n = 10, result = 1, num = 1

As we iterate through the loop, the local variables change, but we stay in the same stack frame because we don't call any other functions.

    product_1_to_n()    n = 10, result = 2, num = 2

    product_1_to_n()    n = 10, result = 6, num = 3

    product_1_to_n()    n = 10, result = 24, num = 4

In general, even though the compiler or interpreter will take care of managing the call stack for you, it's important to consider the depth of the call stack when analyzing the space complexity of an algorithm.

Be especially careful with recursive functions! They can end up building huge call stacks.

What happens if we run out of space? It's a stack overflow! In Python 3.6, you'll get a RecursionError.

If the very last thing a function does is call another function, then its stack frame might not be needed any more. The function could free up its stack frame before doing its final call, saving space.

This is called tail call optimization (TCO). If a recursive function is optimized with TCO, then it may not end up with a big call stack.

In general, most languages don't provide TCO. Scheme is one of the few languages that guarantee tail call optimization. Some Ruby, C, and Javascript implementations may do it. Python and Java decidedly don't.

(i.e.: stored on the process heap or in the stack frame of a calling function). Because of this, the changes made by the function remain after the call completes.

In-place algorithms are sometimes called destructive, since the original input is "destroyed" (or modified) during the function call.

Careful: "In-place" does not mean "without creating any additional variables!" Rather, it means "without creating a new copy of the input." In general, an in-place function will only create additional variables that are O(1)O(1) space.

An out-of-place function doesn't make any changes that are visible to other functions. Usually, those functions copy any data structures or objects before manipulating and changing them.

In many languages, primitive values (integers, floating point numbers, or characters) are copied when passed as arguments, and more complex data structures (lists, heaps, or hash tables) are passed by reference. This is what Python does.

Here are two functions that do the same operation on a list, except one is in-place and the other is out-of-place:

  def square_list_in_place(int_list):
    for index, element in enumerate(int_list):
        int_list[index] *= element

    # NOTE: no need to return anything - we modified
    # int_list in place


def square_list_out_of_place(int_list):
    # We allocate a new list with the length of the input list
    squared_list = [None] * len(int_list)

    for index, element in enumerate(int_list):
        squared_list[index] = element ** 2

    return squared_list

Working in-place is a good way to save time and space. An in-place algorithm avoids the cost of initializing or copying data structures, and it usually has an O(1)O(1) space cost.

But be careful: an in-place algorithm can cause side effects. Your input is "destroyed" or "altered," which can affect code outside of your function. For example:

  original_list = [2, 3, 4, 5]
square_list_in_place(original_list)

print("original list: %s" % original_list)
# Prints: original list: [4, 9, 16, 25], confusingly!

Generally, out-of-place algorithms are considered safer because they avoid side effects. You should only use an in-place algorithm if you're space constrained or you're positive you don't need the original input anymore, even for debugging.

Why a list of characters instead of a string?

The goal of this question is to practice manipulating strings in place. Since we're modifying the input, we need a mutable

A mutable object can be changed after it's created, and an immutable object can't.

For example, lists are mutable in Python:

  int_list  = [4, 9]

int_list[0] = 1
# int_list is now [1, 9]
Python 2.7

And tuples are immutable:

  int_tuple = (4, 9)

int_tuple[0] = 1
# Raises: TypeError: 'tuple' object does not support item assignment
Python 2.7

Strings can be mutable or immutable depending on the language.

Strings are immutable in Python:

  test_string = 'mutable?'

test_string[7] = '!'
# Raises: TypeError: 'str' object does not support item assignment
Python 2.7

But in some other languages, like Ruby, strings are mutable:

  test_string = 'mutable?'

test_string[7] = '!'
# test_string is now 'mutable!'
Ruby

Mutable objects are nice because you can make changes in-place, without allocating a new object. But be careful—whenever you make an in-place change to an object, all references to that object will now reflect the change.

type like a list, instead of Python 3.6's immutable strings.

Breakdown

In general, an in-place

An in-place function modifies data structures or objects outside of its own stack frame

Overview

The call stack is what a program uses to keep track of function calls. The call stack is made up of stack frames—one for each function call.

For instance, say we called a function that rolled two dice and printed the sum.

  def roll_die():
    return random.randint(1, 6)

def roll_two_and_sum():
    total = 0
    total += roll_die()
    total += roll_die()
    print(total)

roll_two_and_sum()

First, our program calls roll_two_and_sum(). It goes on the call stack:

roll_two_and_sum()

That function calls roll_die(), which gets pushed on to the top of the call stack:

roll_die()
roll_two_and_sum()

Inside of roll_die(), we call random.randint(). Here's what our call stack looks like then:

random.randint()
roll_die()
roll_two_and_sum()

When random.randint() finishes, we return back to roll_die() by removing ("popping") random.randint()'s stack frame.

roll_die()
roll_two_and_sum()

Same thing when roll_die() returns:

roll_two_and_sum()

We're not done yet! roll_two_and_sum() calls roll_die() again:

roll_die()
roll_two_and_sum()

Which calls random.randint() again:

random.randint()
roll_die()
roll_two_and_sum()

random.randint() returns, then roll_die() returns, putting us back in roll_two_and_sum():

roll_two_and_sum()

Which calls print()():

print()()
roll_two_and_sum()

What's stored in a stack frame?

What actually goes in a function's stack frame?

A stack frame usually stores:

  • Local variables
  • Arguments passed into the function
  • Information about the caller's stack frame
  • The return address—what the program should do after the function returns (i.e.: where it should "return to"). This is usually somewhere in the middle of the caller's code.

Some of the specifics vary between processor architectures. For instance, AMD64 (64-bit x86) processors pass some arguments in registers and some on the call stack. And, ARM processors (common in phones) store the return address in a special register instead of putting it on the call stack.

The Space Cost of Stack Frames

Each function call creates its own stack frame, taking up space on the call stack. That's important because it can impact the space complexity of an algorithm. Especially when we use recursion.

For example, if we wanted to multiply all the numbers between 11 and nn, we could use this recursive approach:

  def product_1_to_n(n):
    return 1 if n <= 1 else n * product_1_to_n(n - 1)

What would the call stack look like when n = 10?

First, product_1_to_n() gets called with n = 10:

    product_1_to_n()    n = 10

This calls product_1_to_n() with n = 9.

    product_1_to_n()    n = 9
    product_1_to_n()    n = 10

Which calls product_1_to_n() with n = 8.

    product_1_to_n()    n = 8
    product_1_to_n()    n = 9
    product_1_to_n()    n = 10

And so on until we get to n = 1.

    product_1_to_n()    n = 1
    product_1_to_n()    n = 2
    product_1_to_n()    n = 3
    product_1_to_n()    n = 4
    product_1_to_n()    n = 5
    product_1_to_n()    n = 6
    product_1_to_n()    n = 7
    product_1_to_n()    n = 8
    product_1_to_n()    n = 9
    product_1_to_n()    n = 10

Look at the size of all those stack frames! The entire call stack takes up O(n)O(n) space. That's right—we have an O(n)O(n) space cost even though our function itself doesn't create any data structures!

What if we'd used an iterative approach instead of a recursive one?

  def product_1_to_n(n):
    # We assume n >= 1
    result = 1
    for num in range(1, n + 1):
        result *= num

    return result

This version takes a constant amount of space. At the beginning of the loop, the call stack looks like this:

    product_1_to_n()    n = 10, result = 1, num = 1

As we iterate through the loop, the local variables change, but we stay in the same stack frame because we don't call any other functions.

    product_1_to_n()    n = 10, result = 2, num = 2

    product_1_to_n()    n = 10, result = 6, num = 3

    product_1_to_n()    n = 10, result = 24, num = 4

In general, even though the compiler or interpreter will take care of managing the call stack for you, it's important to consider the depth of the call stack when analyzing the space complexity of an algorithm.

Be especially careful with recursive functions! They can end up building huge call stacks.

What happens if we run out of space? It's a stack overflow! In Python 3.6, you'll get a RecursionError.

If the very last thing a function does is call another function, then its stack frame might not be needed any more. The function could free up its stack frame before doing its final call, saving space.

This is called tail call optimization (TCO). If a recursive function is optimized with TCO, then it may not end up with a big call stack.

In general, most languages don't provide TCO. Scheme is one of the few languages that guarantee tail call optimization. Some Ruby, C, and Javascript implementations may do it. Python and Java decidedly don't.

(i.e.: stored on the process heap or in the stack frame of a calling function). Because of this, the changes made by the function remain after the call completes.

In-place algorithms are sometimes called destructive, since the original input is "destroyed" (or modified) during the function call.

Careful: "In-place" does not mean "without creating any additional variables!" Rather, it means "without creating a new copy of the input." In general, an in-place function will only create additional variables that are O(1)O(1) space.

An out-of-place function doesn't make any changes that are visible to other functions. Usually, those functions copy any data structures or objects before manipulating and changing them.

In many languages, primitive values (integers, floating point numbers, or characters) are copied when passed as arguments, and more complex data structures (lists, heaps, or hash tables) are passed by reference. This is what Python does.

Here are two functions that do the same operation on a list, except one is in-place and the other is out-of-place:

  def square_list_in_place(int_list):
    for index, element in enumerate(int_list):
        int_list[index] *= element

    # NOTE: no need to return anything - we modified
    # int_list in place


def square_list_out_of_place(int_list):
    # We allocate a new list with the length of the input list
    squared_list = [None] * len(int_list)

    for index, element in enumerate(int_list):
        squared_list[index] = element ** 2

    return squared_list

Working in-place is a good way to save time and space. An in-place algorithm avoids the cost of initializing or copying data structures, and it usually has an O(1)O(1) space cost.

But be careful: an in-place algorithm can cause side effects. Your input is "destroyed" or "altered," which can affect code outside of your function. For example:

  original_list = [2, 3, 4, 5]
square_list_in_place(original_list)

print("original list: %s" % original_list)
# Prints: original list: [4, 9, 16, 25], confusingly!

Generally, out-of-place algorithms are considered safer because they avoid side effects. You should only use an in-place algorithm if you're space constrained or you're positive you don't need the original input anymore, even for debugging.

algorithm will require swapping elements.

Solution

We swap the first and last characters, then the second and second-to-last characters, and so on until we reach the middle.

  def reverse(list_of_chars):

    left_index  = 0
    right_index = len(list_of_chars) - 1

    while left_index < right_index:
        # Swap characters
        list_of_chars[left_index], list_of_chars[right_index] = \
            list_of_chars[right_index], list_of_chars[left_index]
        # Move towards middle
        left_index  += 1
        right_index -= 1

Complexity

O(n)O(n) time and O(1)O(1) space.

Do you have an answer?

Wanna review this one again later? Or do you feel like you got it all?

Mark as done Pin for review later
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import unittest
def reverse(list_of_chars):
# Reverse the input list of chars in place
pass
# Tests
class Test(unittest.TestCase):
def test_empty_string(self):
list_of_chars = []
reverse(list_of_chars)
expected = []
self.assertEqual(list_of_chars, expected)
def test_single_character_string(self):
list_of_chars = ['A']
reverse(list_of_chars)
expected = ['A']
self.assertEqual(list_of_chars, expected)
def test_longer_string(self):
list_of_chars = ['A', 'B', 'C', 'D', 'E']
reverse(list_of_chars)
expected = ['E', 'D', 'C', 'B', 'A']
self.assertEqual(list_of_chars, expected)
unittest.main(verbosity=2)
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Reset editor

Powered by qualified.io

. . .